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~Analysis of the first-stage flapper indicates that the servovalve time constant can be
minimized by minimizing the area of the Input bellows. The bellows area is the only first-
stage servovalve parameter that can be changed to decrease the servovalve time constant
without necessitating additional parameter changes. Moreover, minimizing the bellows
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1. INTRODUCTION

The control or power element in many hydraulic feedback control systems is the servovalve.
The servovalve varies the rate and the direction of flow of fluid to a fluid motor or an actuator by
metering the hydraulic fluid through controlled orifices.' A large number of servovalves are elec-
trohydraulic. This type is widely used because electrical devices are ideal for sensing, signal
amplification, and computation. On the other hand, the power output and the compactness of
hydraulic actuators make them ideally suited as power devices. Thus, the electrohydraulic ser-
vovalve serves as an interface as well as a power element in control systems. It converts low-power
electrical signals into motion of a valve, which in turn controls large flows or pressures to a
hydraulic actuator.'

The two-stage electrohydraulic valve (fig. 1) has wide usage and is of primary interest in this
study. The two-stage servovalve usually has a nozzle flapper valve for the first or primary stage.
The flapper valve is used with the torque motor (fig. 1) to provide a hydraulic pressure or force to
move thae second- or power-stage spool. The combined torque motor-flapper valve is frequently
called a hydraulic amplifier. This type of hydraulic amplifier is well suited for use as a first stage
because it has an extremely lightweight moving element (the flapper), which requires very small
magnetic forces, thus minimizing the electrical input power required for any given response
characteristic. It has comparatively high leakage flow, but since the first stage need not be large,
its flow consumption may be held to less than 10 percent of the total flow across the power spool.

The second or power stage in the servovalve in figure 1 employs a spool or a sliding element
that moves in a direction perpendicular to the static pressure force or the flow of fluid. It meters
the flow of high-pressure fluid to the actuator. This sliding valve has relatively little leakage flow
and can be built with very high power gains. Servovalves with the torque motor-flapper nozzle
first-stage, spool valve second-stage arrangement can be built with up to 11 kW (15 hp) in ca-
pacity with inputs of as little as 10 mW into the torque motor and with outputs of up to
0.001 m3/s (20 g/m) and time constants of 3 to 5 ms. A two-stage valve of this type is practically
insensitive to accelerations and vibrations because the forces available to drive the spool are many
times greater than the weight of the spool itself. However, the "stiction" force (the force required
to break the spool loose and get it moving) is high with the sliding spool type of second stage, and it
can easily be jammed by dirt and impurities.'

The invention and the development of flueric amplifiers and flueric or fluidic control
elements that can sense, amplify, and compute make it possible to build pneumatic-hydraulic or
all-hydraulic control systens. However, the servovalve in such systems must be designed for
fluidic, rather than electricai, input signals. Pneumatic-hydraulic and all-hydraulic control
systems are of interest becausti

a. They have the potential for high-frequency response (time constants of 1 to 5 ms).

b. They may be more reliable than conventional systems since they are more rugged.

'A. C. Morse, lectrohydraulic Servomechanisms, McGraw-Hill Book Co., New York (1963).
'H. E. Merritt, Hydraulic Control Systems, John Wiley and Sons, Inc., New York (1967).
3R. V. Burton, Desgn Study-Fluidic Armament Control System (FACS), Honeywell, Inc., Minneapolis, MN,

TR-69-2440 (1969).
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Figure 1. Two-stage electrohydraulic servovalve.

c. They will eliminate electrical-to-hydraulic, mechanical-to-hycraulic, etc., inter-

face devices for all-hydraulic systems.

d. They can be powered by the existing hydraulic transmission power supply.

e. They can possibly be produced and operated at lower cost (few moving parts and
no auxiliary power supply for electrical or mechanical components) .4

At present, fluidic input servovalves have time constants of approximately 15 ins. This study
* is primarily concerned with the design changes needed to obtain time constants of 1 to 5 mns for

fluidic input servovalves and to reduce leakage flow.

'L. Ai. Kelly and W. H. Booth, Hydraulic Fluidics, American Socic-tw of Mechanical Engineers (1968).
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2. DESIGN CONSIDERATIONS

One or mnore of thle following resons are usually given for usig fluidic elemeuts in serovalve
design: (1) icreasing reliab~ility. (2) lowering production cost, and (3) providig for fluidic input.

There are many posisible fluidic servovalvt designs. One design' calls for an inverted flajpexr
niozzle first or input stage mid a vortex valve setond stage, A second designs uises, a fluidic power
amplifier (of one or more stages) as; a first stage to drive a second-stage spooml. A third designi calls
for the use of a fluidic amplifier cascade and a "jet pipe" to drive the second-stage spool.

A fourth design calls for eliminating the torque motor from the two-stage valv'e (fig. 1) Und at-
taching mechtanical bellows to the flapjwr arm (fig. 2). The bellows canl then he driven by at fluidic
amplifier. The otiwrations of the two-stage electrohydraulic servovalve (fig. 1) anid the fluidic inl-
put st'rvovalve (fig. 2) art' basically the same. They differ only inl that thle input torque applied to
the flapix'r by the torque motor iduced magnetic forcin tee rhdruirsois provid
ed by the fluidic amplifier output pressure used to alternately charge and disharge the Iwllow.s inl
the fluidic version. This fourth servovalve design seems thle most promisig inl terms of minimizinig
the servovalve time constant and the leakage flow%%. This two-stage fluidic servovalve arrangement
was studied because of its promise and its similarity to the conventional two-stage electrohlydrauilic
servovalve (fig. 1). The design chanlges mleeded to minimize the servovalve time constanit and the
leakage fnow inl this arrangement art' derived inl tlhe following sections.

2.1 Derivation of Servovalve Transfer Function

This study is spec'ifically conce'rned with~ "simple" first-stage designi chaniges that will
minimize tht'servovalve time cotistait and thle leakage flow. Attention is directed to the first stage
of the valve bxet simple first-stage design changes can probably 1w made without necessitatig
redesign of other po~rtions of thle valve. Therefore. the transfer functioni for the fluidic input ser-
vovalve (fig. 3) is derived to determinei the design parameters that canl be- adjusted to inicrease the
servovalve freqluenicy response. Neglecting fluidic amplifier hiput dyniamics anid transport delay. a
pressure difference between the amplifier outputs and thle bellows results in a flow between the
amplifier and the bellows giv.en by eqluationi (1):

1'Al - I'M - (1,Asi + (I)Qi

where'

PA- amplifier output pressure (Pa).

pi- bellows pressure (Pal).

7.S, Ilon ad r. s. sabtmdt -iii vortIm Va Sattkactuator O)relocpmeit. (-etrmt Ele'ctric Co.. Sehmwrtady,
NY. L'IAVLABS TohmilivI Rtk~rt 69-23 (Mayv 19W9).

*Hi. C. Kent anti J. H . Sitslund. Uplinkflukjik Smmsar('tjutor 1)nvdopmrnt. Ionet'd Inc. fInvzpk~v MN,
MAARD ThAmkvIo RCqirt 73-12 (May 1973).

XJH.G(rtarsn. HRmmms-h atkd i~wVmrnt ain a Flsjddic Srn',actugitor. (*(tefd) M~ewtfm Co.. Binghamton. NY.
AFFD.- TR-T0-2j (Ju1 970)).
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LA - amplifier output inertance (Ns'/m5 ),

s - Laplace transform variable (I/s),

RA - amplifier output resistance (Ns/mS),

Q, - flow into bellows (M3 /s).

The sum of the flows into the bellows is

Q,- Qo - CsPB, (2)

where

Qo 0 rBABSO, outflow caused by extension of bellows (m3/s),

rB - bellows moment arm (m),

AB - bellows cross-sectional area (ms),

8 = angular deflection of flapper or torque arm (rad),

C = fixed volume capacitance of bellows (m5/N).

Substituting equation (2) into equation (1) for both sides (fig. 3 shows a push-pull
system), noting that outflow on one side is inflow to the opposite side, gives the differential bellows
pressure:

APA 2(rBAB)(LAs + RA)sO(s)
APB(s) LACS + RACs + I LACOS' + RACS + 1 (3)

From figure 4, the fluidic input torque, T, (Nm), is equal to the restoring torque as
shown below:

T, - APB(s)(rBAB) - (Js + K,, + 2kB)(s) , (4)

where

polar moment of inertial of flapper (m-N-s),

Kan net torque spring rate due to torsional spring, magnetic effects, and
flow forces on flapper (m-N/rad),

kB = spring rate of bellows (N/m).

8
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Figure. 2. Two,-stage fluidic input wrnuvaIe (whcnatic fromn t). 1~v and D). N. Worniley. Ntamschusett
Insttute of Tchnology 1I.-CY-77.I91-1. December 1977).
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Figure 3. Fluidk- input vervovalvc (whematic fromi D. lee and D. N. Wormicy. Massachusetts Institute of
Tewhnology HIID-CR-77-191-1, December 1977).
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iJS K)('~ FLAPPER 

RESTORING TORQUE m WOs + Kan + 2kv rs8(s

figure 4. I'dr((K% acting (in flappe'r.

If the flappe-r arnm hends as show~n in figure 5, the tWke(ue smumiiatiox on the flupix-r
must include the Imnding term. KfrN*+(s), as shown beclowm:

I1B+Bj)- (J0 + K A i2kjjrfj)I9(s)I + KdrN-,+(s) (5

where

K,- spring constant of cantilevered flapper arm, which is as.suimed to lie

fixe'd at puivot (Ni rad).

fN - flapper moment arm (in),

*(s) - single side flapper beniding angle (rad).

Substituting equation (3) into equiation) (5) gives the flappe-r deflection, 8(s) (rad).



-FLAPPER

NOTE: SYMBOLS ARE DEFINED ON PP. 23, 24.

s)

Figure 5. Flapper deflection and bending angle.

I 1 .BAB KcfrB+(s )
9PA(rBAB) LACS' + RACs + I

J(s) + [ 2(rBAB)'(LAS + HA) 1 (6)

+ I LACS' + RAC s + I2J

However, if the flapper arm cantilever spring constant, klf, is very high, then +(s) is negligible,
and equation (6) reduces to

1

APA(rBAB) LACs + RACS + 1G(s) JO+=rA)(~ R)s+Kn+2~$ (7)

Js LAC + +NU + 2k4

12
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For hydraulic applications, C - (volume/bulk modulus) << 1 and equation (7) becomes

S(S) AA(rBAB) (8)
Ell)- [j + 2(rBAB)tLA]s' + [2(rBAB)'RA]S + Kan + 2krlr()

The flapper displacement, xf (rad), at the nozzles is given as

Xf - rNO, (9)

When the flapper is deflected from its centered position, a differential pressure, APIp (Pa), is
generated at the ends of the spool:

APL,- Kfxf , (10)

where

Kf = flapper nozzle pressure gain (N/n 3 ).

The differential pressure acts against the centering springs at the ends of the spox)l.
Neglecting sliding friction, the spol displacement, , (m), as a function of AP~p is given as

- PpA /K , (11)

where

A, - spool end area (m'),

K, f differential spring constant of centering springs attached to ends of spool
(N/m).

Finally, the spool di ,hacement generates a load flow, Q (m13/s), given by

Q. - K|,x%, (12)

where

K.- spool flow constant (m'/s).

A block diagram description of the complete two-stage setvovalve is shown in figure 6.
The spool position feedback term, rNANAPLp, is negligible so that this is essentially an open 1001p
type of servovalve.' The complete valve transfer function is given as

'A. C. Mose. Eletrohydrudc Smvo t.eanw , Mccrau-Hil Book Co., New York (1963).

13
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Figue 6.Fluik iput rvovlvebloc diaram

rltA4 NKIV. -4
a- [+(tA)IAs'+ K +K +kA ~ (3

A@(reK#)'K

order pl~roinlatins reui the Fluidicsinpu "t)(jvale timek doisatof h eroav, Ti

aprxmto asue evthth srvaulv eva v esared apevcs aha fis-r e histe givnbyera

tion (14):

mT +1

Where

K, servovalve gain (iO~/Ns).

This approxiimation should correspond to the 45-deg phase point rather than the 0.7
am1plitude po~int (-3 dB). This representation of the servovalve dynamics is goo~d through the low-
frequency range, approximately 0 to 50 liz.0 If the low-frequency range of the fluidic input valve
is of interest, then the s' termn in equation (13) can be neglected compared with the (Kan + 2kr 1)
term. rhix approximation implies that the fluidic amplifier output inertanc., LA, and the flapxwr
polar moment of inertia. J. are negligible in this frequency range. The valve transfer function then
becomes

'V. I. Thayert. Truaror Fum-stdvpu or &4)&~vvai~e e, e'd, Moog Inc.. Eml Auro~ra. NY, T'echnkwl Rusdri~ 103
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AjKfA KSj,

j(s) . Qi,(s) . +. r) + ' (15)

APA(s) 2A2BIS

where

rB  rN.

Thus, the servovalve time constant, T, is given as

" K '' 2A D' 1t I A  IS

T - I2IA(6
+ 2kg)

where

2A'l[(K,,/r') + 2kI ] = effective capacitance of bellows.

A phase lag of 45 deg octtrs at the first-order break freluency, fB (1/s), given by

fil t 2nT (17)

Therefore, T should be minimized to achieve favorable high-frequency response. From equation
(16), the design parameters affecting T are Al, KA, rB, kB, and RA - RA is determined by the
available system flow, and K,,, is fixed by the flapper nozzle and the second-stage spool design.
Parameters AB, riD, and kB can all be used to minimize T. Decreasing rB decreases T; however, it
decreases also the servovalve gain {AHKfAKsp/[(K 1 /r*) + 2kB]Ks} from equation (15) by the
same magnitude. Increasing kB decreases T, but it decreases also the servovalve gain by the same
magnitude. Decreasing the bellows area decreases T by the area squared, AB. It decreases also the
servovalve gain, but to the first power, AD. Since usually AD < 1, then for any decrease in All, the
decrease is greater in T, which has the factor Af1 , than in the servovalve gain, which has the factor
AD. Therefore, as a first step, the bellows area should be reduced to minimize r.

A second-order approximation to servovalve dynamics is used when response near the
90-deg phase lag point is of interest. This approximation is usually used in describing position con-
trol servomechanisms, that is, closed-loop position control systems. The 90-deg phase lag iint is
best associated with the apparent natural frequency (or natural frequency), w (1/s), of the ser-
vovalve, and the damping ratio, 4, is best associated with the amplitude characteristic.$ The
second-order approximation to servovalve dynamics has the form

*D. I. ThayW., rornawr FuneMmspjor Mmg Sevvt'dahv, liev. ed., M(og In.. East Aurora, NY. Technical lBulletin 103

15

.v



+ (18) C) +

where

K2 - servovalve gain (m$/Ne).

If the frequency reponse near the 90-deg phase lag point is of interest for the fluidic
input servovalve, then equation (13) can be rewritten to approximate the servovalve transfer func-
tion, QL(:)/APA(s), as

WOO' (Kafl + 2kBRB) K.
-IAP(AW x + 2(Bj)L 2AB)"RAS- + +r

i

where

Kal + 2ker rB

J + 2(rBAB)'LA

?HAjRKfA.Kqp

K

J + 2(rBAB)tLA

2 - 2(rBAB)IR A

Un  Kan + 2kBr!B

(rBAB)'RA

-(Kan + 2kBrsB)[J + 2(rBAB)'LA] }V4

16

"'V''~7777 Ai



"Now I
A better second-order approximation of servovalve response requires that the input dynamics and
the transport delay of the fluidic amplifier be included in equation (19). A high-performance ser-
vovalve calls for the natural frequency to be as large as possib'e and the damping ratio to be in the
range 0.7 4 j 4 1.0. From equation (19), a high natural frequency requires that the bellows area
be as small as possible and, for a given bellows area, that the amplifier output resistance be ad-
justed so that Z is in the desired range. Good first- or second-order servovalve dynamics call for the
bellows area to be as small as possible.

2.2 Fluidl Amplifier Leakage Flow

The fluidic amplifier portion of the fluidic input servoval,e (fig. 2) is part of the first
stage of the valve. Therefore, che fluidic amplifier leakage flow adds to the existing first-stage
leakage flow of the flapper nozzle valve. The amplifier leakage flow is the amplifier supply flow,
Q, (ml/s). The necessary supply flow is a function of the amplifier output resistance and the
desired servovalve time constant. The supply flow is derived in terms of these parameters.

The amplifier supply flow ctin be written as

where

Ps - amplifier supply pressure (Pa),

- amplifier power nozzle resistance (Ns/in),

a - constant (with values in range 0.5 < a 4 0.6),

n - constant (determined by amplifier height and number of parallel
laminates used).

From equation (8), the maximum flapper deflection, OUM. (rad), occurs when s "* 0 and is given w%

* r A AP^ (21)

From equation (21), APA can be written as

+ 2kB  rBO,

APA- J As (22)• A8

If a first-order approximation is used to describe the servovalve dynamics, the time constant from
equation (16) is

17
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lFromI eqjuation (16), IIA "ll ii b written its

r 1'

+ 2k,, r

41

- L n . .... . ....... ...u( 3

and, by using tnuiations (22) and (23). tl supply flov cl le written its

tit :

Thtius. nllillfiizing the bellovs artea iuilliiz,, also the Ienmplifier sipply flow or the first-stage ser-
voval'e leakage flow.

3. TIST RESULTS

''he I hirry Diamuond 1.lboratories (111).) ptircha.sed two fhluidic llpit servovalves with essell-
tially identical performatcie speifications (fig. 2). (Cursory tests were conducted on one srvovalv',
at 11I1,. Siluct, I) does not have the facilities for thoroughly testing servo%'lves, thl, other olle
was fuirther develoled and thoroughly tvested on contravt. 0 The additional development allowed
the servovalve to be driven by ali electrical signal or i ftluidic signal. Til electrical signal energized
tle torque motor. wlich in turn drove tile flapper nozzle valve. The fluidic signal was Aillulified
by a fluidic amplifier. which drove a set of bellows, which it turit drove thl, fhillpr noil, valve.
This servovalve had an initial set of wiIlows with an arai smaller than normal. A - 31.9 i
The test program called for replacing this set of hellows with a smaller set. Ali - 18.1 i anil and
then with a larger *st. A" - 44,5 mmii. This llinedure was set lp is i imeans of verifying the con-
clusiolls reached in tile design onsileratious (sect. 2)l, The servovalve was tested with the initial set
ot bellows, All - 31.9 niul, Figure 7 shows the dynamic response of the servovalv, driven ly an
electrical signal id by a ifluidic signal." The ciurve of lhii lag versti, m'it'ny for the fluildically
driven serovlve shows 45 deg of phase lag at 20 I!I. From equation (16), telie servovalv time coi-

stant 'anl be given as

I I
- ... tan - tal 4 - 8 tis (25)

"!)A a.wl 1). N. Wornmi, IHydivulic SigtraI-'rM vd#4z AIdiftr I'Morttsune, iv lt dtiQo, (oitrd Su.l tiu,

,Ahmuschimhtm/ htutte¢of 'lT'diill/, ( Cilrlid, mA1.

,t il4



where

* - 45 deg,

f - 20 l1,

This scr w iovh mrl dxins to fhlidi" iput rl t lnts a slignifkant imprtvent ovtr prtevious fluidk
input %'aivt, lmixim. 1his imiprovt'nt was a, mpliht by using (1) mialhr ivilowls and (2) a
fuidi" amplifier with little low-i'vteuenwy phase shift. The initial set of lillows, All, was not
replaI'td after the ttting relirtod by Loti and Wormhey, that is. with the .matller st of bellows.
A6, or the largetr wt tit lw1lows, Ail, Ivaui the rovaIlvtl 00t10M with tl illitial %Vt of bllows
was ,vtoeo to the tiesitrl mieimL-t, and bt-,aua tilt, illoms were a ct and reliability problem. For a
normal prodttiont run oi he'llows, th, spring rates voary ±30 itormvt fron the nominal v'alut, To
obtain two eIllow%- with idezntical spring rates inrvase's tilt, ixtt vousiderahly. Mortm\ttr. tile
tellows rupturted vry easily due to ,ither mt'rressuring or mishandling.

tc Even though tle servoValve r itse to fluidiv input rt, pants signifk'ant ianp rvtvmint,

the r"Ixims is not tomparable to tilt roslitse to eleetrieal input as seen in figure 7, The addtel
pham shift using fhdidit, input is due to pitase lag hi the fluitti, amplifier and tile amplifier olitp.it

NOTt N MI4)1.8 Ait DEFINFI') ON I ,2, i4,

0

00 SPOOL VALVE RESPONSE, .WMP6l0 TOTAL RESPONSE,

-0 & ELECTRICAL RESOE, -*/ -

Ii- 0I . . . .. i , , a

10 20 40 100 200

0

__ ........

FREQUENCY (H&)

Figait 7. biu~dk' input 0ervov4ld (Iin. 1) f1VqtMwA'y rMpoXaui (data (rm 1. 1.t a1d 1), N. Worinlev.
!Manchumtts Itutituic odf 1\lato I11Mi.C- -77-191-1, Ic ,viulier 1977).

'V- OY WI ), V, 4W#V. j, amirtd, 1womO.- i")1 I(kR-l Wig11mo N)IaM64"l'l,~)
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resistance and bllows capacitance time contstant. The phase shift observed with the fluidic Input
valve due to the time constant is described by txquation (15). and the added phase shift due to the
fluidic Amplifier dynamics canl he described by eqluation (13) with the addition of the amplifier in-.
put dynamics and transport delay. The added phase shift observed using fluidic input to the ser-
vovalve in the 20- to 120-Hz region became significant when~ the valve was tested& in a closed-l(oop
servo control system, These reults indicate that vrvovalve response to fluidic Input cannot be
meaningfully approximated as a first-order system (sect. 2). The freqluenicy response of the
amplifier must be considered. The results indicate also that further development is needed to mnake
the valve responst) to fluidic input comparable to valve response to electrical input, possibly by us-
ing anl approach that does not require bellows. This development is crucial because. at present,
fluidic control system performance is degraded by the servovalve, and this degradation is indepen-
dent of any fluidic sensing, amplification. and signal proce'ssing errors.

4. CONCLUSIONS

This design study is concurned with two-stage fluidic input servovalves using bellows to drive
a first-stage flapper nozzle valve. The study shows that minimizing the bellows area reduces (1) the
servovalve time constant and (2) the first-stage fluidic amplifier leakage flow. A reduced fluidic in-
put servovalve time constant in the 1 - to 5-mns range is desired. Experimental tests were conducted
to verify the results of the design study. These tests of a dualnput (electrical and fluidic) ser-
vovalve conducted at the Massachusetts Institute of Technology show that a timeI Constant, T
8 Ins, was obtained by using very smnall bellows. The first-order approximation to a servovalve
response, used in the design consideration was found to be valid tip to 20 Hz or for a phase lag to 45
dog. This servovalve responise to fluidic input represents a significant improvement over previous
fluidic input servovalv response. Hlowever, the response of the servovalve to fluidic input is no)t
comparable to the response to electrical input beyond 20 Hz. The two servovalve responses differ
in that there is additional phase lag by using fluidic input. The a~dded phase shift was due to (1) the
fluidiv amplifier phase lag and (2) thie amplifier output resistance and bellows capacitance time
constant. This added phase lag degraded the system performance when the servovalve, w~as usedIwith fluidic input in a closed-loop serv system. The experimental results indicate that servovalve

jrsrt to fluidic input must be approximated as a second- or higher-order system when used in a
closed-loop servo system, The approximate response must take into account (1) the phase shift of
the fluidic amplifier and (2) the amplifier output resistance and bellows capacitance time con-
stant. The results indicate also that further development is needed to make the fluidic' Input valve
response comparable to the electrical input valve response.

"A) L.ee tn 1). N. UI'vriryn. 1iydrtaul Sigriabl-a'vWtig Am.plifier 1rfrtiutwe isI,. tk curandvu swatrt4 sI.
MU~w'hu~wgg I'&zSitute of T.echisd4LW. Cambridge'. MA. II)-S77- 191-1 (1) tnabe 1977).
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NOMENCLATURE

a Constant (with values in range 0.5 < a < 0.6)
AB Bellows cross-sectional area (in')
A, Spool end area (in')

AN Nozzle exit area (in')

C Fixed volume capacitance of bellows (m3/N)
f Frequency (Hz)
fB Break frequency (l/s)
H(s) Transfer function (mS/Ns)
HI(s) Servovalve transfer function, first-order approximation (mS/Ns)
H2(s) Servovalve transfer function, second-order approximation (m3/Ns) I

J Polar moment of inertia of flapper (m-N-s)
kB Spring rate of bellows (N/m)
Kan Net torque spring rate due to torsional spring, magnetic effects, and flow forces on flap-

per (m-N/rad)
Kd Spring constant of cantilevered flapper arm, which is assumed to be fixed at pivot

(N/rad)
Kf Flapper nozzle pressure gain (N/m 3 )

K, Differential spring constant of centering springs attached to ends of spool (N/m)
Kp Spool flow constant (mr/s)

K, Servovalve gain, first-order approximation (mINs)
K2  Servovalve gain, second-order approximation (mS/NsP)
LA Amplifier output inertance (Ns/m')
n Constant (determined by amplifier height and number of parallel laminates used)

PA Amplifier output pressure (Pa)
PB Bellows pressure (Pa)
P, Amplifier control pressure (Pa)

PLP Differential pressure (Pa)
P, Amplifier supply pressure (Pa)
Qj Flow into bellows (m3/s)

QL Load flow (m3/s)
Q. Flow out of bellows (M3/s)

Q, Amplifier supply flow (m'/s)

rB Bellows moment arm (in)
rN Flapper moment arm (in)
RA Amplifier output resistance (Ns/m)
B Amplifier power nozzle resistance (Ns/m')

23
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NOMENCLATURE (Cont'd)

s Laplace transform variable (1/s)
T, Fluidic input torque (Nm)
xf Flapper displacement (m)

x, Spool displacement (m)

r Load velocity (m/s)
8 Angular deflection of flapper or torque arm (rad)
emaz Maximum flapper deflection (rad)
8(s) Flapper deflection (rad)

£ Damping ratio
r Equivalent servovalve time constant (s)
+(s) Single side flapper bending angle (-ad)
wn  Appa'ent natural frequency or natural frequency (1/s)
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